skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Yi-Heng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Gene Ontology (GO) has been widely used to annotate functions of genes and gene products. Here, we proposed a new method, TripletGO, to deduce GO terms of protein-coding and non-coding genes, through the integration of four complementary pipelines built on transcript expression profile, genetic sequence alignment, protein sequence alignment, and naïve probability. TripletGO was tested on a large set of 5754 genes from 8 species (human, mouse, Arabidopsis, rat, fly, budding yeast, fission yeast, and nematoda) and 2433 proteins with available expression data from the third Critical Assessment of Protein Function Annotation challenge (CAFA3). Experimental results show that TripletGO achieves function annotation accuracy significantly beyond the current state-of-the-art approaches. Detailed analyses show that the major advantage of TripletGO lies in the coupling of a new triplet network-based profiling method with the feature space mapping technique, which can accurately recognize function patterns from transcript expression profiles. Meanwhile, the combination of multiple complementary models, especially those from transcript expression and protein-level alignments, improves the coverage and accuracy of the final GO annotation results. The standalone package and an online server of TripletGO are freely available at https://zhanggroup.org/TripletGO/. 
    more » « less
  2. Abstract X-ray crystallography is the major approach for determining atomic-level protein structures. Because not all proteins can be easily crystallized, accurate prediction of protein crystallization propensity provides critical help in guiding experimental design and improving the success rate of X-ray crystallography experiments. This study has developed a new machine-learning-based pipeline that uses a newly developed deep-cascade forest (DCF) model with multiple types of sequence-based features to predict protein crystallization propensity. Based on the developed pipeline, two new protein crystallization propensity predictors, denoted as DCFCrystal and MDCFCrystal, have been implemented. DCFCrystal is a multistage predictor that can estimate the success propensities of the three individual steps (production of protein material, purification and production of crystals) in the protein crystallization process. MDCFCrystal is a single-stage predictor that aims to estimate the probability that a protein will pass through the entire crystallization process. Moreover, DCFCrystal is designed for general proteins, whereas MDCFCrystal is specially designed for membrane proteins, which are notoriously difficult to crystalize. DCFCrystal and MDCFCrystal were separately tested on two benchmark datasets consisting of 12 289 and 950 proteins, respectively, with known crystallization results from various experimental records. The experimental results demonstrated that DCFCrystal and MDCFCrystal increased the value of Matthew’s correlation coefficient by 199.7% and 77.8%, respectively, compared to the best of other state-of-the-art protein crystallization propensity predictors. Detailed analyses show that the major advantages of DCFCrystal and MDCFCrystal lie in the efficiency of the DCF model and the sensitivity of the sequence-based features used, especially the newly designed pseudo-predicted hybrid solvent accessibility (PsePHSA) feature, which improves crystallization recognition by incorporating sequence-order information with solvent accessibility of residues. Meanwhile, the new crystal-dataset constructions help to train the models with more comprehensive crystallization knowledge. 
    more » « less